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LMTER TO THE EDITOR 

Residence time distribution of a tracer atom in supercooled 
fluids 

T Odagakit and Y Hiwatarit. 
t Department of Physics, Kyoto Institute of 'kchnology, Kyoto 606, Japan 
t Department of Physics, Kanarawa Universily, Kanazawa 920, Japan 

Received 29 April 1991 

Abstract. The residence lime disuibution of a tracer atom in soft-sphere supercooled 
fluids is discussed on the basis of the trapping diffusion model of the glass transition. An 
explicit relarion between a parameter of the trapping diffusion model and the soft-sphere 
Ruid is obtained. 

The dynamics of atoms near a glass transition point is known to have two distinct 
modes; one is the rapid oscillation around a local equilibrium position and the other 
is a jump motion between those local equilibrium positions [1,2]. The latter is re- 
sponsible for a slow dynamics in mesoscopic time scales and determines the longtime 
dynamical behaviours such as the diffusion constant in liquids. ' b o  approaches have 
recently been proposed to explain the dynamical characteristics of the glass transi- 
tion: one is the mode-coupling approach [3,4] and the other is the trapping diffusion 
approach [5]. In the mode-coupling approach, one concentrates on the density f l u c  
tuation and the non-decaying behaviour of the density fluctuation is considered to 
be the signature of the glass transition. A recent advanced mode-coupling theory 
has also revealed that if a coupling between the density and the momentum density 
fluctuations is taken into account, then no sharp transition can be expected to occur. 
An id,eal glass transition is predicted only as a limiting condition. 

The trapping diffusion model for the glass transition deals with the dynamics of 
atoms that is assumed to be described by the random walk on a simple cubic lattice 
with a random environment [5] 

where P(s',fls,,O) denotes the conditional probability of a tracer atom being at s 
at rime f when it started from s,, at f = 0, and the summation is taken over the 
nearest neighbours of site s. The jump-rate distribution is considered to be the most 
fundamental feature in a supercooled fluid affected by a random configuration of 
the neighbours surrounding the tracer atom, and is assumed to follow the power law 
function 

otherwise. 
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Flg~tre 1. ?he residence time distribution $(F) for lhe lrapping diallsion model [or 
various values of p. 

It has been shown that the trapping diffusion model with this umua for P(w.) gives a 
successful explanation for the long-time behaviour of the mean square displacement, 
the diffusion constant and the non-Gaussian parameter of supercooled soft-sphere 
fluids [5,6], all consistent with the results of molecular dynamics simulations. In 
fact, using the maximum of the non-Gaussian parameter, the glass transition point is 
determined to be rs 7 1.58 (r is the effective coupling constant) for the binary soft- 
sphere system [6], which corresponds to p = 0 for the trapping diffusion model. This 
model also explains dynamical changes near r = 1.45 (a kinetic transition) observed 
in supercooled binary soft-sphere fluids with the molecular dynamics simulations [2,7] 
as an apparent glass transition on the basis of the sub-anomalous dynamics predicted 
by the trapping diffusion model [SI. 

In this letter we present a direct comparison of the residence time distribution 
and the molecular dynamics simulation to give a further ground for adopting the 
trapping diffusion approach as a model for the glass transition in simple liquids. The 
residence time of an atom is defined as the time span before the first jump occurs 
after the obsenation started. The residence time distribution @(I) for the trapping 
diffusion model is given by 

where G(x) is the Gamma function and -y*(u,x) is the Tricomi incomplete Gamma 
function. Figure 1 shows $ ( I )  for various values of p. It is straightforward to obtain 
the limiting behaviours of $ ( I ) .  

(i) Near t = 0 

(ii) Near t = CO: 



Letter to the Editor 5193 

Figure 2. Lnelog plot of ; against r8 - r with rs = 1.58 for several values of r. 
The vertical bars denote the range of 5 estimated from + ( O )  via (7). i" is the effective 
coupling consLant for the binary soft-sphere syslem. 

Here, i = mor. 
The mean residence time fMm defined by t$(t)dt is given by 

rhIRT = (f + l)/mOp (6) 
for p > 0. The mean residence time diverges at p = 0, which corresponds to the 
glass transition point. For p < 0, fMm does not exist ahere the dynamics becomes 
anomalous and non-Gaussian character appears. We also note that the fluctuation 
of the residence time ceases to exist for p < 1, where the sub-anomalous diffusion 
takes place [9]. These behaviours are responsible for the dynamical characteristics of 
supercooled fluids explained above [5].  

Detailed comparison of the residence time distribution expressions (3) with those 
obtained by the molecular dynamics simulation has been carried out [IO]. The overall 
behaviours of the residence time distribution observed in supercooled binary soft- 
sphere fluids are qualitatively in good agreement with (3). We can use the behaviour 
of $(t)  at I = 0 to determine the relation between the parameters p and r of soft- 
sphere fluids. First we estimate $(O) for each r from the residence time distribution 
observed for soft-sphere fluids. Then, we obtain corresponding p by the relation 
(see (4)) 

Unfortunately, since the statistics for $(f) near f = 0 are not so good, it is hard 
to obtain a highly accurate estimate of $(O). Our current best estimate of p as a 
function of r is shown in a log-log plot in figure 2, from which we find 

Here we set the power to be 3 so that it can be consistent with the relation between 
r and p found for the diffusion constant and the non-Gaussian parameter [6] ,  and 
the time scale mor is chosen to be 0.1, 7 being the microscopic time scale for the 
soft-sphere system. It should be remarked here that the numerical constant may 
change if one gets better data for $(I). 
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In summary, we conclude that the semi-quantitative behaviours of the residence 
time distribution observed in the supercooled binary soft-sphere fluids agree quite well 
with those predicted by the trapping diffusion model and that the function $(t) can 
be used to determine the relation between the parameters in the trapping diffusion 
model and the soft-sphere system. Although the numerical factor in (8) will depend 
on the statistics of the data, we consider that the relation (8) will be fairly accurate. 
We propose an extensive study of the residence time distribution $ ( f )  near t = 0 to 
confirm relation (8). 

This work was supported in part by grant-in-aids from the Ministry of Education of 
Japan. 
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